

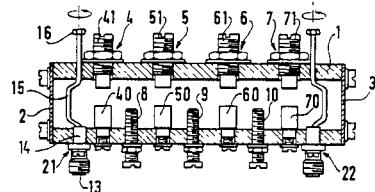
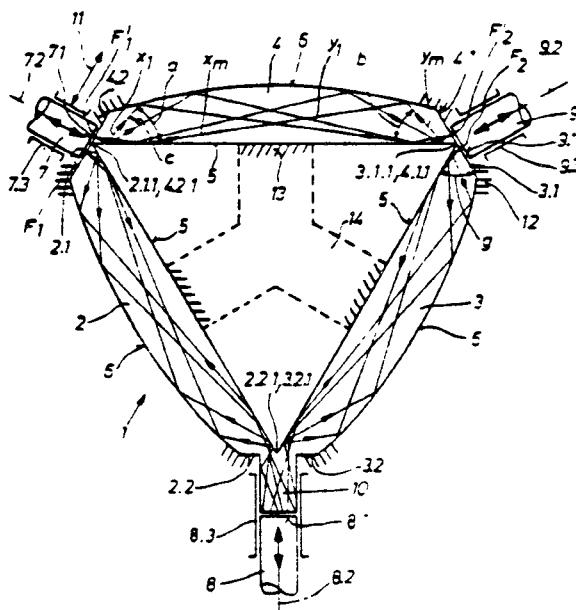
Patent Abstracts

These Patent Abstracts of recently issued patents are intended to provide the minimum information necessary for readers to determine if they are interested in examining the patent in more detail. Complete copies of patents are available for a small fee by writing: U.S. Patent and Trademark Office, Box 9, Washington, D.C. 20231.

4,746,883

May 24, 1988

Evanescence-Mode Microwave Bandpass Filter with a Rotatable Crank Shape Coupling Antenna



Inventors: Marc Sauvage and Marie-Christine

Assignee: Alcatel Thomson Faiscaux Hertziens.

Filed: June 13, 1986.

Abstract — The microwave bandpass filter in the form of a cutoff frequency waveguide (1) or evanescent mode guide, being besides tunable within a range of frequencies and having at least one terminal (21,22) of the coaxial type, has terminals each equipped with a crank-shaped coupling antenna (15) operable to be rotated about its longitudinal axis for filter tuning purposes

4 Claims, 1 Drawing Sheet

4,747,654

May 31, 1988

Optical Monomode Guidance Structure Including Low-Resolution Grating

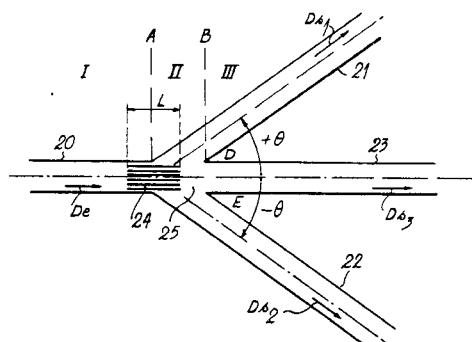
Inventor: Alfredo Yi-Yan.
Filed: May 4, 1987.

Abstract —Optical guidance structure comprising a monomode input guide having a particular direction (D_e), two monomode output guides having directions (D_{s1}, D_{s2}) symmetrically inclined with respect to the direction (D_e) of the input guide and a widened junction zone between the input guide and the output guides. A diffraction grating is located between the input guide and the junction. The grating has a spacing which defines only two diffraction directions of orders differing from zero, respectively $+1$ and -1 . The spacing is chosen so that these two diffraction directions coincide with the directions of the first two output guides.

4,747,651

May 31 1988

Three-Way Start Splitter for Optical Waveguides


Inventor: Albert Wieemeyer

Inventor: Albert Wiesmeier
Assignee: Daimler-Benz Aktiengesellschaft

Assignee: Daimler-Benz
Filed: Mar. 14, 1986

Abstract —A bidirectional three-way star splitter for optical wave guides having coupler connections for the optical wave guides and output and input coupling elements between the individual coupler connections. Three coupling elements are provided and include a plane-parallel glass or synthetic glass element of homogeneous composition. Additionally, each coupling element has a longitudinal inside surface which is constructed as a plane reflector and a longitudinal outside surface which is constructed as an elliptical reflector, the two longitudinal surfaces being joined at both ends by planar coupling surfaces adjoining the respective optical wave guides.

11 Claims, 6 Drawing Sheets

26 Claims, 2 Drawing Sheets

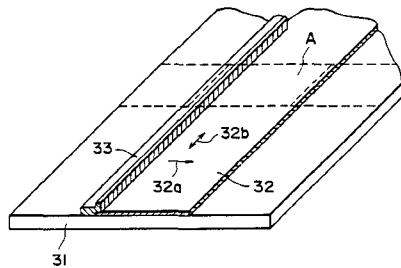
4,747,671

May 31, 1988

4,748,427

May 31, 1988

Ferroelectric Optical Modulation Device and Driving Method Therefor Wherein Electrode Has Delaying Function


Inventors: Tohru Takahashi, Hiroshi Inoue, Hoshiyuki Osada, Yutaka Inaba, and Junichiro Kanbe.

Assignee: Canon Kabushiki Kaisha.

Filed: Nov. 17, 1986.

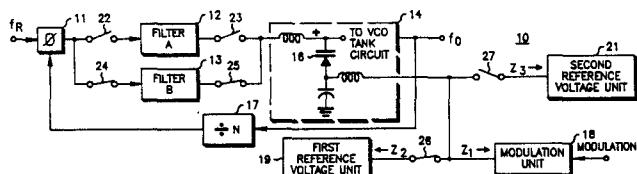
Abstract — An optical modulation device is disclosed, which includes: a first substrate having thereon a signal transmission electrode connected to a signal source and a first electrode having a delay function connected to the transmission electrode; a second substrate having thereon a second electrode disposed opposite to said first electrode; and an optical modulation material, particularly a ferroelectric liquid crystal, disposed between the first and second electrodes. An optical modulation system, particularly a gradational display system, utilizing the delay function is also disclosed.

38 Claims, 6 Drawing Sheets

4,748,425

May 31, 1988

VCO Range Shift and Modulation Device


Inventor: Joseph P. Heck.

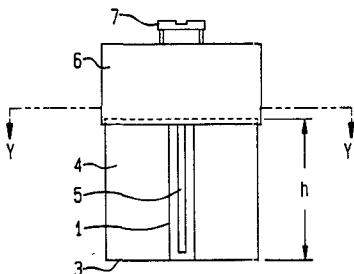
Assignee: Motorola, Inc.

Filed: Feb 18, 1987.

Abstract — A modulation and range shift device for use with a PLL frequency synthesizer VCO. The modulation signal is provided to the negative side of the tuning varactor (16) of the VCO (14). In addition, variable voltages can be applied to the negative side of the tuning varactor (16) to achieve range shift as desired. Component variations in the modulation section (18) need not be varied to accommodate changes in the loop filter (12 and 13) of the PLL circuit.

6 Claims, 2 Drawing Sheets

Microwave Resonating Cavity with Metallized Dielectric


Inventor: Carlo Buoli.

Assignee: GTE Telecommunicazioni, S.p.A.

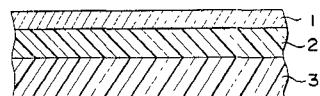
Filed: Nov. 6, 1986

Abstract — A microwave resonating cavity including a hollow cylindrical body shaped in the form of a parallelepiped and consisting of a dielectric material coated by a metallic layer, said dielectric material having a high dielectric constant having a value greater than 30, and wherein said hollow body includes an upper base, a lower base, an external surface and an internal surface, and further includes a non-metallized area defining a metallized coupling line onto the external surface of the said hollow cylinder and wherein said hollow cylinder has an inner diameter ranging between 3 and 5 mm, an outer diameter ranging between 6 and 15 mm and a height ranging between 5 and 10 mm, and further including a metallic cap welded to the upper base of said hollow body, and further including an adjusting screw for fine adjustment of the resonating frequency.

4 Claims, 1 Drawing Sheet

4,749,245

June 7, 1988


Thin Film Waveguide Device and Manufacturing Method for Making Same

Inventors: Nobuhiko Kawatsuki, Masao Uetsuki, and Junji Nakagawa.

Assignee: Kuraray Co., Ltd.

Filed: Mar. 6, 1986

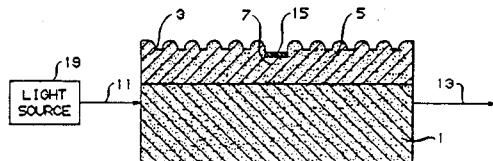
Abstract — A thin film waveguide path comprises a waveguide path layer overlying a substrate but separated therefrom by at least one intermediate layer. The waveguide path layer comprises a first transparent high molecular material. At least one intermediate layer comprises a second organic high molecular material having a solubility different from that of the first material and a lower refractive index lower than that of the first material. The substrate comprises a third high molecular material different from the first and second materials for supporting the waveguide path and intermediate layers.

4,749,949

June 7, 1988

Self-Biasing Diode Microwave Frequency Multiplier

Inventors: Robert D. Albin and Frank K. David


Assignee: Hewlett-Packard Company.

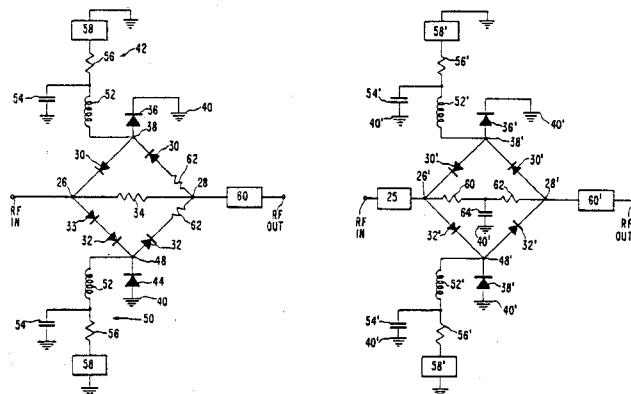
Filed: Apr. 29, 1986.

Abstract — A microwave frequency multiplier employs a first diode and a second diode each coupled in anti-parallel relationship across a signal input of a finline structure, each of the diodes being associated with signal-induced biasing elements for self biasing the diodes. A bias is caused to occur at

output of the amplifier to an output node. Furthermore, each transmission line has (1) at least one line termination at one of its ends for absorbing signals incident on that end of the transmission line, and (2) biasing means for dc biasing the transmission line at a corresponding voltage potential.

8 Claims, 15 Drawing Sheets

4,752,743

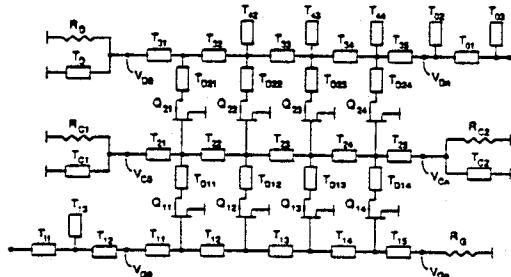

June 21, 1988

Linearizer for TWT Amplifiers

Inventors: David Pham, Allan Podell, and John A. Steck.
Assignee: Varian Associates, Inc.
Filed: Sept. 26, 1986.

Abstract — The input signal to a TWT amplifier is predistorted in amplitude and phase to the inverse of the amplifier transfer characteristic by an adjustable circuit including a phase linearizing section and an amplitude linearizing section, both in series with the input signal and amplifier. Each section includes two pairs of back-to-front Schottky diodes. Preferably an additional diode is in series with one pair for the amplitude section. The diodes of each pair are of like polarity and opposite to the diodes of the other pair of the section. Additional diodes are connected between the pair junctions and ground, and adjustable dc bias fed into these junctions. Additional resistors and capacitors bridge the pairs, and are arranged into a phase delay network in one of the sections.

4 Claims, 5 Drawing Sheets


4,752,746

June 21, 1988

Wide-Band Microwave Matrix Amplifier

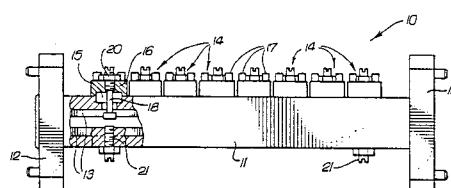
Inventor: Karl B. Niclas.
Assignee: Watkins-Johnson Company.
Filed: Feb. 18, 1987.

Abstract — A microwave amplifier that both multiplicatively and additively amplifies microwave frequency signals. The amplifier, herein coined a matrix amplifier, is a distributed amplifier with two or more tiers (rows) of transistors. Each tier has a plurality of transistors which additively amplify the signal entering that row of the amplifier, and each row multiplicatively amplifies the output of the previous row. The gates of the transistors in each row are sequentially coupled to an input transmission line having a series of transmission elements. The outputs of all the transistors from each row are sequentially coupled to the input transmission line of the next tier, except that the outputs of the last tier are coupled to an output transmission line for transmitting the

DESCRIPTION OF CIRCUIT COMPONENTS

- Q_{mn} — TRANSISTOR n ON TIER m
- T_{in} — INPUT MATCHING TRANSMISSION LINE ELEMENTS
- T_{on} — OUTPUT MATCHING TRANSMISSION LINE ELEMENTS
- T_{in} — GATE LINE TRANSMISSION LINE ELEMENTS
- T_{an} — CENTER LINE TRANSMISSION LINE ELEMENTS
- T_{dn} — DRAIN LINE TRANSMISSION LINE ELEMENTS
- T_{on1} — TRANSFORMING TRANSMISSION LINE ELEMENTS (1. TIER)
- T_{on2} — TRANSFORMING TRANSMISSION LINE ELEMENTS (2. TIER)
- T_{an} — DRAIN LINE OPEN-CIRCUIT SHUNT STUBS
- R_{in} — GATE LINE TERMINATION
- R_{cn} — CENTER LINE TERMINATIONS
- R_{dn} — DRAIN LINE TERMINATION
- T_{cn} — CENTER LINE SHORT-CIRCUIT SHUNT STUBS
- T_{dn} — DRAIN LINE SHORT-CIRCUIT SHUNT STUB

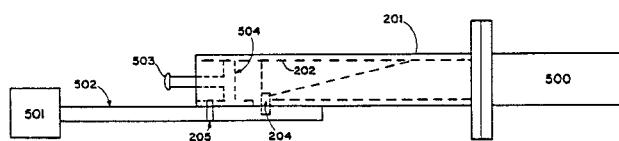
4,752,753

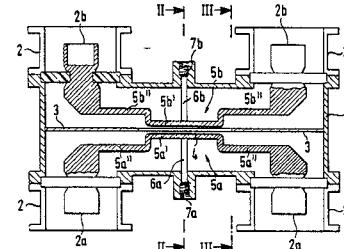

June 21, 1988

Coaxial Waveguide Band Reject Filter

Inventors: Glen E. Collins and Michael A. Claggett.
Assignee: WAVECOM.
Filed: Sept. 4, 1986.

Abstract — The present invention relates to a waveguide band reject filter employing TEM coaxial type resonators that partially protrude into the top wall of the waveguide in such a way as to produce a predetermined frequency selective discontinuity. By proper choice of location, number of resonators, resonator configuration and protrusion, a spurious free highly efficient frequency selective band reject filter response can be obtained.


9 Claims, 6 Drawing Sheets

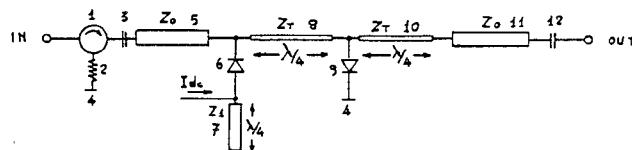

with the rectangular waveguide and the waveguide section. The waveguide section has the tapered wedge housed within it along its top, and is electrically connected to the ground planes of the stripline. The tapered wedge is electrically connected with the center conductor of the stripline, to provide a transition between the rectangular waveguide and the stripline. Optimum impedance matching and voltage standing wave ratio can be empirically determined in the assembly by inputting signals into the stripline or waveguide, and taking impedance measurements while moving a reflecting panel which rests behind the tapered wedge to different positions in the slotted waveguide section.

4 Claims, 2 Drawing Sheets

which extends in said housing. The housing is thus divided into two housing parts whose cross section is defined by a long side and a short side the difference of which substantially corresponds to the width of each coupling line while the cross sectional circumference of each coupling line corresponds essentially to the circumference of the inner conductors. Outside the coupling path, the coupling lines are provided with homogenous sections of sufficient length to reduce field inhomogeneities before the coupling path.

8 Claims, 1 Drawing Sheet

4,754,240


June 28, 1988

p-i-n Diode Attenuators

Inventor: Franco Marconi.
Assignee: GTE Telecommunicazioni, S.p.A.
Filed: Nov 6, 1986.

Abstract—A p-i-n diode variable attenuator featuring decoupling values higher than those achievable using the technique used so far, is described. This result has been achieved by implementing the line sections which the p-i-n diodes are connected to with a characteristic impedance different than the characteristic impedance input and output to/from the attenuator.

16 Claims, 3 Drawing Sheets

4,754,241

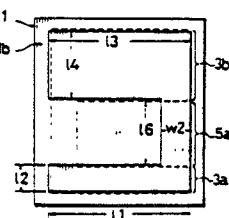
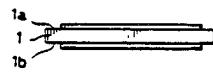
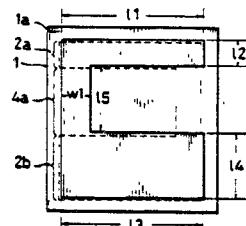
June 28, 1988

3 dB Directional Coupler

Inventor: Georg Spinner.
Filed: May 14, 1987.

Abstract—A 3 dB directional coupler includes a housing accommodating two spaced apart coupling lines connecting the inner conductors of coaxial lines and coupled to each other via a coupling aperture in a partition wall

4,754,242




June 28, 1988

Resonator

Inventors: Hisatake Okamura, Teruhisa Tsuru, and Masahiko Kawaguchi.
Assignee: Murata Manufacturing Co., Ltd.
Filed: Mar. 2, 1987.

Abstract—A resonator comprising an equivalent circuit including an LC series circuit having a first capacitance element and inductance elements connected in series to both sides of the first capacitance element, and a second capacitance element connected parallel to the LC series circuit. A plurality of resonators having this construction may be magnetically connected in series to provide a filter, by utilizing the two inductance elements constituting parts of the resonator and without necessitating separate coupling members such as capacitors or coils.

2 Claims, 4 Drawing Sheets

